

USER’S REFERENCE MANUAL

649 School Street / Pembroke, MA 02359 USA / Tel: (781) 293-3059

www.scidyne.com

DIO24-ARD
24 Bit Digital I/O Interface

Shield for Arduino and Compatible Devices

Model No. 100-7692
Doc. No. M7692 Rev: 3.0 11/8/22

© Copyright 2014 - 2022
SCIDYNE Corporation
“All Rights Reserved”
Previous revision: V2.0

DISCLAIMER: This document
contains proprietary information
regarding SCIDYNE and its products.
The information is subject to change
without notice. SCIDYNE makes no
warranty of any kind with regard to this
material, including but not limited to,
the implied warranties of
merchantability and fitness for a
particular purpose. SCIDYNE shall not
be liable for errors contained herein or
for incidental or consequential damages
in connection with the furnishing,
performance, or use of this material. No
part of this document may be duplicated
in any form without prior written
consent of SCIDYNE.

WARRANTY: SCIDYNE warrants
this product against defects in materials
and workmanship and, that it shall
conform to specifications current at the
time of shipment, for a period of one
year from date of shipment. Duration
and conditions of warranty may be
superseded when the product is
integrated into other SCIDYNE
products. During the warranty period,
SCIDYNE will, at its option and
without charge to Buyer, either repair or
replace products which prove defective.
Repair or replacement of a defective
product or part thereof does not extend
the original warranty period.

WARRANTY SERVICE: For
warranty service or repair, this product
must be returned to a service facility
designated by SCIDYNE. The Buyer
must obtain prior approval and a Return
Material Authorization (RMA) number
before returning any products. The
RMA number must be clearly visible on
the shipping container. The Buyer shall
prepay shipping and insurance charges
to the service facility and SCIDYNE
shall pay shipping and insurance
charges to Buyer’s facility for products
repaired or replaced. SCIDYNE may,
at its discretion, bill the Buyer for return
shipping and insurance charges for
products received for repair but
determined to be non-defective.
Additionally, the Buyer shall pay all

shipping charges, duties and taxes for
products returned to SCIDYNE from
another country.

LIMITATION OF WARRANTY:
The forgoing warranty shall not apply
to defects resulting from improper or
negligent maintenance by the Buyer,
Buyer-supplied products or
interfacing, unauthorized
modifications or misuse, operation
outside the published specifications of
the product or improper installation
site preparation or maintenance, or the
result of an accident. The design and
implementation of any circuit using
this product is the sole responsibility of
the Buyer. SCIDYNE does not
warrant the Buyer’s circuitry or
malfunctions of SCIDYNE products
that result from the Buyer’s circuitry.
In addition, SCIDYNE does not
warrant any damage that occurs as a
result of the Buyer’s circuit or any
defects that result from Buyer-supplied
products. This Warranty does not
cover normal preventative
maintenance items such as fuse
replacement, lamp replacement,
resetting of circuit breakers, cleaning
of the Product or problems caused by
lack of preventative maintenance,
improper cleaning, improper
programming or improper operating
procedures. No other warranty is
expressed or implied. SCIDYNE
specifically disclaims the implied
warranties of merchantability and
fitness for a particular purpose. Some
states do not permit limitation or
exclusion of implied warranties;
therefore, the aforesaid limitation(s) or
exclusion(s) may not apply to the
Buyer. This warranty gives you
specific legal rights and you may have
other rights which vary from state to
state.

CERTIFICATION: Testing and
other quality control techniques are
utilized to the extent SCIDYNE deems
necessary to support this warranty.
Specific testing of all parameters is not
necessarily performed, except those
mandated by government requirements.

30-DAY PRODUCT EVALUATION
POLICY: SCIDYNE offers a no-risk
trial for initial, low quantity, evaluation
purchases. Items purchased for
evaluation can be returned within 30
days for a full refund less shipping
charges. The Buyer must obtain a
Return Material Authorization (RMA)
number before returning any products.
The entire package, including
hardware, software, documentation,
discount coupons and any other
accessories supplied must be returned
intact and in new and working
condition. This policy will not be
honored for packages that are not
returned complete and intact. The
Buyer shall prepay shipping and
insurance charges to SCIDYNE. To
expedite the return process, the RMA
number must be clearly visible on the
shipping container. SCIDYNE will
cancel the invoice, refund by check or
issue credit to your credit card within 10
days after receipt of returned
merchandise.

LIFE SUPPORT POLICY: Certain
applications may involve the risks of
death, personal injury or severe
property or environmental damage
(“Critical Applications”).

SCIDYNE products are not designed,
intended, authorized, or warranted to be
suitable for use in life-support
applications, devices or systems or
other critical applications without the
express written approval of the
president of SCIDYNE.

DIO24-ARD PN 100-7692 Page 3

Table of Contents

CONVENTIONS AND TERMINOLOGY USED THROUGHOUT THIS PUBLICATION .. 4

SAFETY AND USAGE CONVENTIONS ... 4
TERMINOLOGY ... 4

Arduino ... 4
Logic Conditions .. 4
Numbering Systems .. 4
Multi-Byte Word Formats .. 4

INTRODUCTION.. 5
HARDWARE DETAILS ... 8

I/O STAGE OPERATION .. 9
Input Mode: .. 9
Output Mode: .. 9

EXAMPLE INTERFACE CIRCUITS ... 10
Reading a Switch or Contact Closure ... 10
Driving a Relay Coil ... 10
Driving LED's ... 11
Controlling High-Power Loads .. 11
Sensing Open-Collector Outputs .. 12

SOFTWARE DETAILS ... 13
CHOOSING A SELECT SIGNAL ... 13

Using onboard SELECT ... 13
Using EXTernal SELECT Input ... 14

DIO24-ARD ARDUINO LIBRARY ... 15
Library Inclusion and Instantiation ... 15
setup() ... 16
writeDDR() ... 17
readDDR() .. 18
setBit() .. 19
clrBit() .. 20
bitSetClr() ... 21
readBit() .. 22
portWrite() .. 23
portRead() ... 24

SPECIFICATIONS .. 25
APPENDIX A: SCHEMATIC DIAGRAM ... 26
USER NOTES .. 27

DIO24-ARD PN 100-7692 Page 4

Conventions and Terminology Used Throughout This Publication

Safety and Usage Conventions

Note:

Provides important information and useful tips that will assist in
the understanding and operation of this product.

Caution:

Calls attention to a procedure, practice, or condition that could
possibly cause equipment damage or bodily injury.

Danger:

Calls attention to a procedure, practice, or condition that is likely
to cause extensive equipment damage, severe bodily injury, or
death if not observed.

Terminology

Arduino Through-out this document the term Arduino will be used generically to mean an actual Arduino
board or any compatible device which the DIO24-ARD is plugged in to.

Logic Conditions
Unless otherwise noted, logic signals are designated as TRUE (Set) and FALSE (Clear). Names with an
asterisk (*) postscript are inverted or active low. Unless otherwise noted TRUE is considered logic '1'
(+5Vdc or +3.3Vdc) and FALSE is considered logic '0' (0Vdc).

Numbering Systems
Computerized equipment often requires its numeric data to be represented in different forms depending on
the audience and information being conveyed. Decimal numbers are typically used for end-user data entry
and display while internally these values are converted and manipulated in native binary. Hexadecimal
numbers are often used by programmers as an intermediate level between binary and decimal notations.

Base Name Format (MS ←−−→ LS)

2 Binary 0b10111001 or 1011 10012

10 Decimal 185

16 Hexadecimal 0xB9 or B916 or HB9

Multi-Byte Word Formats
In this document multi-byte values are shown as 0x1234 where 12 represents the most-significant byte and
34 is the least significant byte. Depending on your particular system the values could be internally stored
as little-endian or big-endian.

DIO24-ARD PN 100-7692 Page 5

Introduction

The DIO24-ARD is a 24-Bit (channel), non-isolated, digital Input/Output interface specifically designed to
provide the high sink current drive capability required by many peripheral components. It attaches to an
Arduino by means of the standard R3 connector footprint and uses +5V for operation. Communications
between the Arduino and DIO24-ARD is through the SPI (Serial-Peripheral-Interface) bus, via the six pin
ICSP connector, and one user designated Arduino digital output acting as a board SELECT signal.

Within the context of this document the term channel refers to an Input/Output
stage which connects the DIO24-ARD to external devices. The term bit refers to
one internal logical signal associated with a channel. A port is a group of related
eight bits / channels.

The 24 channels appear across three 8-bit ports, A, B, and C, as shown in the block diagram below. Each
channel may be individually operated as ether an input or output under software control. Channels
configured as outputs can passively source 1.0ma and actively sink 85ma, sufficient sink current to reliably
drive solid-state and mechanical relays. External components attach to the DIO24-ARD by means of a 50
conductor IDC flat-ribbon cable type connector. The pin-out of this connector is compatible with industry
standard solid-state I/O module racks. The DIO24-ARD is also designed to connect to commonly
encountered components including LED's, Switches, and Relays.

Figure 1 - DIO24-ARD Block Diagram

DIO24-ARD PN 100-7692 Page 6

Before placing the DIO24-ARD into service it is helpful to become familiar with the location and purpose
of some important components. Below is a figure showing their locations followed by a brief description
of each.

Figure 2 - Component Identification

(1) Arduino Headers
These are the five standard Arduino R3 headers. The DIO24-ARD features stack-through connections
permitting multiple Arduino shields to be placed on top of one another.

(2) J1, I/O Connector
This 50 pin IDC flat-ribbon cable connector is used to attach external devices to the DIO24-ARD. All even
numbered pins 2 - 50 are connected to signal ground. Each of the odd numbered pins 1 - 47 connect to I/O
signals where Pin#1 is I/O channel #23, Pin#3 is I/O channel #22, and so on continuing to Pin#47 which
is I/O channel #0.

Pin #49 is not used but reserved as an Arduino supplied +5V source for externally connected devices. See
item (8) +5V ENable for more details and important cautions.

(3) RESET Push Button
Momentarily pressing this button will reset the entire Arduino system.

DIO24-ARD PN 100-7692 Page 7

(4) J2, SELECT
A shunt placed between the center row and one of the 14 outside positions selects which Arduino digital
I/O signal will be used as the designated enable for the DIO24-ARD during SPI communications. The
remaining 13 digital I/O signals are unaffected and available for other purposes. The silk screen text printed
along the outside edge of J2 correspond to the Arduino digital I/O signals. Only one shunt must be installed.
The corresponding digital signal must be configured as an output and cannot be used for any other function
in an Arduino system.

(5) EXTernal SELECT Input
A wire can be soldered here and the other end driven by a digital signal external to the DIO24-ARD, such
as one of the higher numbered digital I/O signals originating from an Arduino MEGA2560 board, or even
an available analog input properly reconfigured for digital output operation. See the "Choosing a SELECT
signal" section of this manual for details on using this feature.

(6) Custom Configuration, CONFIG-0, CONFIG-1
These two Solder Jumpers, SJ1 and SJ2, are used for customized versions of the DIO24-ARD. To maintain
future compatibility, they should be left in the factory default un-soldered, OPEN, position.

(7) Interrupts, INTR-0, INTR-1
These two solder jumpers, SJ3 and SJ4, are provided for customized versions of the DIO24-ARD. To
maintain future compatibility, they should be left in the factory default un-soldered, OPEN, position.

(8) +5V ENable
Soldering these two pads of SJ5 together will route the Arduino supplied +5V to pin #49 of connector J1.

J1 pin #49 is not used but reserved as an Arduino supplied +5V source for externally
connected devices. Most present versions of Arduino hardware are incapable of
providing an adequate amount of current to operate a fully loaded I/O module rack. It
is therefore recommended that the +5V Enable Solder Jumper SJ5 (8) remain in the
factory default un-soldered, OPEN, position, and any external circuitry be powered by
an external +5V power supply. In addition, keeping SJ5 (8) open also prevents the
possibility of damage caused by an external power source back-feeding +5V in to the
DIO24-ARD and Arduino system.

DIO24-ARD PN 100-7692 Page 8

Hardware Details

External devices attach to the DIO24-ARD through J1, a 50 pin IDC flat-ribbon type connector. The Pin
Out follows the industry standard for 8, 16 and 24 position solid-state I/O racks and is compatible with
products offered by numerous manufactures.

Notes:
1) All even numbered pins 2 - 50 are connected to signal ground.

2) Pin #49 is intentionally not connected by default. It can be
 optionally configured to supply Arduino produced +5V to
 externally connected device by shorting solder jumper SJ5.

Most present versions of Arduino hardware are
incapable of providing an adequate amount of current
to operate a fully loaded I/O module rack. It is therefore
recommended that the +5V Enable Solder Jumper SJ5
remain in the factory default un-soldered, OPEN,
position, and any external circuitry be powered by a
separate +5V power supply. In addition, keeping SJ5
open also prevents the possibility of damage caused by
an external power source back-feeding +5V in to the
DIO24-ARD and Arduino system.

The DIO24-ARD is also intended to interface with switch
contacts, relays, LEDs and many other common peripheral
devices. A companion 50-position Screw-Terminal board,
SCIDYNE Part Number: 100-7625/50, is available separately to
make field wiring to these components straightforward.

Figure 3 - J1 Connector

DIO24-ARD PN 100-7692 Page 9

I/O stage operation
Each of the 24 I/O channels use an identical circuit design. The arrangement allows each channel to be
independently operated as either an Input or an Output under software control as illustrated and described
below.

Figure 4 - Simplified I/O Channel Circuitry
Input Mode:
Upon a system reset, the flip/flop is cleared deactivating transistor Q and placing it in a high impedance
state. The I/O channel is pulled high (+5V) by virtue of the 4.7k ohm resistor. Its value has been chosen to
supply reasonable source current while the I/O stage functions as an output yet be capable of being
overridden by external devices when used as an input. The level of the I/O channel is also routed to the
input of the inverting buffer. The inverted state of the I/O channel is read back by the Arduino during SPI
communications with the DIO24-ARD. As described, the I/O channel being pulled high causes a logic "0"
to be read for this channel. If an external device were to pull the I/O channel to ground, then a logic "1"
would be read instead. If necessary, the application software can perform an invert operation if the actual
state of the I/O channel must be represented.

Any channel being used exclusively as input-only MUST ALWAYS have its
data bit written as logic "0" whenever writing to its associated port. This
requirement is automatically performed in the background when using the
supplied library routines. By virtue of the software AND operation, any Data
Direction bit that is “0” will force a “0” to be written to the flip/flop irrespective
of the intended Write Data Bit state.

Output Mode:
The data direction bit associated with the channel must be “1” to allow output write operations. When the
I/O stage functions as an output, the 4.7k ohm pull-up resistor supplies up to 1.0ma of source current to
external devices whenever the flip/flop is at logic "0". Performing a write operation with the corresponding
I/O channel bit at logic "1" sets the flip/flop which activates the transistor. The transistor pulls the I/O
channel hard to ground providing a low impedance path capable of sinking 85ma. A read operation of this
bit essentially returns the logic state stored in the flip/flop due to the double inversion created by the
transistor and buffer.

DIO24-ARD PN 100-7692 Page 10

Example Interface Circuits
The DIO24-ARD is fully compatible with industry standard I/O modules and the J1 connector can directly
connect to 8, 16, and 24 position racks. However, the versatility of the DIO24-ARD I/O channel circuitry
makes the DIO24-ARD well suited to satisfy a wide variety of other commonly encountered interfacing
needs. The following example circuits illustrate the versatility of the DIO24-ARD and a few ways it can be
applied.

Reading a Switch or Contact Closure Driving a Relay Coil

Figure 5

Figure 6

Any channel configured as an input can be used to read
the state of a Push-Button, Switch, or Dry Contact. It's
important to observe that whenever writing to the
PORT associated with an input-only channel, the
channel's data bit is always written as logic "0". This
assures the Flip/Flop output is always at "0" forcing
transistor Q off and keeping the channel exclusively
configured as an input. The accompanying library
routines take care of this provided the channels Data
Direction bit has been initialized to “0”.

When the switch is open the 4.7k pull-up resistor to
+5V causes logic "1" to be presented to the inverting
buffer. Closing the switch provides a path to ground
and makes the input to the inverting buffer logic "0".

If the switch is located a considerable wiring distance
away from the DIO24-ARD it is recommended that
connections be made using shielded cable to improve
noise immunity.

Switch State Read Data Bit
Switch Open Logic "0"

Switch Closed Logic "1"

 Mechanical relays inherently provide electrical isolation and can
control loads far exceeding the voltage and current capability of the
driving source. Any number of DIO24-ARD channels can be used
to drive 5V mechanical relays. The only stipulations are that a relay
coil must be rated for +5V operation and have a DC resistance no
lower than 60 ohms. In addition, an external +5V power supply is
recommended because the standard Arduino hardware is limited on
the amount of 5V power it can provide to operate attached devices,
especially if the Arduino is powered via USB.

Writing to the associated PORT with the channel's data bit as "0"
resets the Flip/Flop turning off transistor Q resulting in the relay
being de-energized. Writing the channel's data bit as "1" sets the
Flip/Flop turning on transistor Q which activates the relay by
providing a path to ground for the relay coil. Reading the channel
bit returns the state of the flip/flop. The diode across the relay coil
is recommended to suppress back EMF generated whenever the
relay coil is de-energized.

C = Common, NC = Normally Closed contact, NO = Normally Open contact

Write Data Bit Relay State, Connection made Read Data Bit
Logic "0" Relay De-Energized, C-to-NC Logic "0"
Logic "1" Relay Energized, C-to-NO Logic "1"

GND

J1

PUSH-BUTTON
OR

SWITCH
OR

CONTACT

Typical I/O Channel
Circuitry Shown

DIO24-ARD

I/O
Channel

+5V

AND

Data Direction Bit

Read
Data Bit

Write
Data Bit

"0" = Input-Only
D

R

Port
Write
Signal

Inverting
Buffer

Reset

Q

Flip/Flop

D

C

Q

R

4.7k

Read
Data Bit

Write
Data Bit Port

Write
Signal

Inverting
Buffer

Reset

R

Flip/Flop

C

D

"1" = Output
Data Direction Bit

AND Q
R

Q

D 4.7k

+5V

I/O
Channel

GND

J1

DIO24-ARD
Typical I/O Channel
Circuitry Shown

C

NC

NO L
O
A
D

Vac

5V Relay

+

-

TO OTHER CIRCUITRY
+5V

POWER
SUPPLY

D

DIO24-ARD PN 100-7692 Page 11

Driving LED's Controlling High-Power Loads

Figure 7

Figure 8

The DIO24-ARD can drive LEDs as shown. Writing to
the associated PORT with the channel's data bit as "0"
resets the Flip/Flop turning off transistor Q resulting in
the LED also being off. Writing the channel's data bit
as "1" sets the Flip/Flop turning on transistor Q which
consequently illuminates the LED by providing a path
to ground. A suitable limiting resistor must be placed in
series with the LED to prevent excessive current draw.

Although an external power supply is depicted, the
required +5V can be provided by the Arduino instead
(via the DIO24-ARD) by shorting solder jumper SJ5.
Be sure to consider all the loads that must be supplied
when choosing the Arduino as the +5V power source.

Write Data Bit LED
Logic "0" Off
Logic "1" On

 It is sometimes necessary to control loads which require higher
voltage, current, or power than the DIO24-ARD itself can provide.
By adding an external transistor these requirements are easily
satisfied. This example shows one DIO24-ARD channel feeding the
gate of an N-Channel MOSFET transistor which then drives a +24V
load. Although a DC motor is shown, a solenoid, relay, alarm, LED
string, or other high-power load could easily be substituted.

Writing to the associated PORT with the channel's data bit as "0"
resets the Flip/Flop, turning off transistor Q which allows the
channel output to be pulled to +5V by virtue of the 4.7k pull-up
resistor. This activates the MOSFET and consequently the motor.
Alternatively, writing the associated PORT channel's data bit as "1"
sets the flip/flop, turns on transistor Q, which clamps the MOSFET's
gate to ground causing it and the motor to turn off. The diode across
the motor is optional but is often included to suppress possible back
EMF whenever an inductive load, such as a motor or relay coil, is
suddenly de-energized.

Particular design consideration should be given regarding system
reset. Since the Flip/Flop is forced to "0" during system reset this
simple example results in the motor being activated. In a practical
application, the +24V supply would only be enabled after the
DIO24-ARD has been properly initialized.

Write Data Bit Load State
Logic "0" Motor On
Logic "1" Motor Off

GND

J1

R =
5 - LED VF

LED I

L
F

+5V
POWER
SUPPLY-

+

+5V En

SJ5

49

LED

(Optional)

"A" "B"

Use "A" for
DIO24-ARD

Supplied +5V

Use "B" for
Externally

Supplied +5V+5V

Typical I/O Channel
Circuitry Shown

DIO24-ARD

Port
Write
Signal

Read
Data Bit

Data Direction Bit

Write
Data Bit

AND

C

Inverting
Buffer

Reset

R

Flip/Flop

QD

R

D

Q

4.7k

I/O
Channel

"1" = Output

GND

J1

G

D

S

DC MOTOR

+24V

MOSFET
ex. RFP12N10L

+

-

+24V
POWER
SUPPLY

D

Enable

Enable After
DIO24-ARD Initialization

Port
Write
Signal

Read
Data Bit

"1" = Output
Data Direction Bit

Write
Data Bit

AND

Reset

Inverting
Buffer

QD

R

C

Flip/Flop

Typical I/O Channel
Circuitry Shown

R

Q

D

DIO24-ARD +5V

I/O
Channel

DIO24-ARD PN 100-7692 Page 12

Sensing Open-Collector Outputs

Figure 9

Some devices, such as Hall-effect switches and Gear
Tooth sensors, signal their operation using an "Open-
Collector Transistor Output". Their transistor output
behaves like a switch by providing a low impedance
path to ground when activated. Any DIO24-ARD
channel configured as an input can be used to sense the
operation. It's important to observe that whenever
writing to the PORT associated with the channel, that
the channel's data bit is always written as logic "0". This
assures the channel remains configured as an input by
maintaining the Flip/Flop output at "0" and keeping
transistor Q in an off, non-conductive, state. The
accompanying library routines take care of this provided
the channels Data Direction bit has been initialized to
“0”.

When the device's Open-Collector output is off the 4.7k
pull-up resistor to +5V causes logic "1" to be presented
to the inverting buffer. Conversely, when the device
Open-Collector output is on, it pulls the input to the
inverting buffer to ground i.e., logic "0".

If the Open-Collector device is located a considerable
wiring distance away from the DIO24-ARD it is
recommended that connections be made using shielded
cable to improve noise immunity.

Open-Collector Output Read Data Bit

Transistor Off (Open) Logic "0"

Transistor On (Closed) Logic "1"

I/O
Channel

GND

J1 OPEN COLLECTOR OUTPUT
Data Direction Bit

AND

Read
Data Bit

Write
Data Bit

"0" = Input-Only

Inverting
Buffer

D

Q
Flip/Flop

Q
Port
Write
Signal R

Reset

D

C

R

+5V

4.7k

DIO24-ARD
Typical I/O Channel
Circuitry Shown

DIO24-ARD PN 100-7692 Page 13

Software Details

This section covers the software aspects necessary to operate the DIO24-ARD. Where noted the
accompanying library and software examples are available for downloading on the scidyne.com website.

Choosing a SELECT signal
The DIO24-ARD requires one Arduino digital output to be
used exclusively as the board SELECT signal. Once
properly configured, in hardware and software, the signal
will enable the DIO24-ARD on the SPI bus whenever logic
"0" and disable it whenever logic "1".

Using onboard SELECT
The J2 SELECT conveniently allows an available Arduino
digital signal to be used by placing a shunt between the
center row and one of the 14 outside positions. The other
13 digital I/O signals are unaffected and available for other
purposes. Position #10 is the Factory Default position for
the DIO24-ARD. Several of the Arduino digital signals are
pre-assigned or have a de-facto usage and may not be
available. The following table provides a brief summary of
the standard Arduino digital I/O signals. The information
should be carefully compared against your particular Arduino hardware and application.

Arduino Typical Digital I/O Usage

Digital I/O
Designation

Typical Usage Comment

0 RX, Serial Communications Avoid if using serial communications

1 TX, Serial Communications Avoid if using serial communications

2 Interrupt-0 Possible conflict if interrupt-0 is used

3 Interrupt-1 Possible conflict if interrupt-1 is used

4 Chip Select for SD Memory Possible conflict if SD Memory is also used

5 Unassigned Available if not used elsewhere by application

6 Unassigned Available if not used elsewhere by application

7 Unassigned Available if not used elsewhere by application

8 Unassigned Available if not used elsewhere by application

9 Unassigned Available if not used elsewhere by application

10 SS, Chip Select for EtherNet chip DIO24-ARD Factory Default, Possible conflict if Ethernet is used

11 MOSI Hard wired to ICSP MOSI signal on Arduino UNO

12 MISO Hard wired to ICSP MISO signal on Arduino UNO

13 SCK Hard wired to ICSP SCK signal on Arduino UNO

Figure 10 - J2 Select (Factory Default)

DIO24-ARD PN 100-7692 Page 14

Using EXTernal SELECT Input
If necessary, the DIO24-ARD can be externally enabled
using a digital signal other than those presented on J2
SELECT. This is particularly handy if all of the standard
Arduino digital I/O signals are already being used for other
purposes, but an external digital signal is available. For
example, one of the higher numbered digital I/O signals
originating from an Arduino MEGA2560 board.

To use this feature a wire must be soldered at the EXT input
pad on the DIO24-ARD. The other end of the wire is then
connected to and driven by the external digital signal. In
addition, the J2 SELECT shunt must be positioned to
prevent a conflict between the external digital signal and the
14 standard digital signals. This is accomplished by
installing the J2 shunt between any two adjacent positions
in the center row.

Any signal used for the External Select must meet the digital input voltage levels
described in the specification section of this manual. Exceeding the levels by
over-driving or under-driving, even momentarily, could damage the DIO24-ARD
and devices attached to it.

Figure 11 - External Select Input

DIO24-ARD PN 100-7692 Page 15

DIO24-ARD Arduino Library

SCIDYNE has developed an Arduino library to simplify applying the DIO24-ARD. The library provides
several useful and proven routines to manipulate individual bits, write and read ports, and implement
software-based Data Direction for each channel. The library is supplied as a compressed .zip file that is
installed using the Add ZIP Library feature within the Arduino IDE. After installation, examples sketches
are available which further illustrate the use of the library routines.

Function: Library Inclusion and Instantiation

Syntax: #include <SCIDYNE_DIO24ARD.h>

SCIDYNE_DIO24ARD objectName;

Inputs: objectName: User defined unique name for one instance of the SCIDYNE_DIO24ARD
library.

Outputs: None

Description: Include and instantiate the SCIDYNE_DIO24ARD library. A separate object must be
instantiated for each DIO24-ARD that will be controlled by library routines. When
using several DIO24-ARD boards, the multiple libraries can be instantiated using
different object names or an array of the same named library object i.e.; objectName[3];

To be accessible by all routines within a program instantiation should be done at the
global level i.e.; outside of the Arduino setup() or loop() routines.

Example: #include <SCIDYNE_DIO24ARD.h> // Include the DIO24-ARD library

SCIDYNE_DIO24ARD DIO24ARD; // Create an object of the library called DIO24ARD

DIO24ARD.setup(10, 0xFF, 0xFF, 0xFF); // Perform Setup

DIO24-ARD PN 100-7692 Page 16

Function: setup()

Syntax: setup (pinNumber, portA_DDR, portB_DDR, portC_DDR);

Inputs: PinNumber: Arduino digital I/O pin to be used exclusively as the DIO24-ARD select
signal for SPI transactions. Each DIO24-ARD requires a different SELECT pin.

portA_DDR: Initialize portA (Channels [7:0]) Data Direction

portB_DDR: Initialize portB (Channels [15:8]) Data Direction

portC_DDR: Initialize portC (Channels [23:16]) Data Direction

Outputs: None

Description: Setup does the following:
 Configures pinNumber as an output to serve as the SELECT signal. Defaults to

logic “1”, de-selecting the DIO24-ARD on the SPI bus.

 Channel Data Direction is initialized. Channels that will be used as input-only
must have their corresponding Data Direction bits set to “0”. Output channels
must have their corresponding Data Direction bits set to “1”. Data Directions
can be changed later by a calling setDDR().

 The Arduino Serial-Peripheral-Interface is activated in its default configuration.

Example: /**
 * Setup a DIO24-ARD to use Pin Number 10 and the Data Directions as follows:
 * portA (channels 7:0) as Input-only
 * portB (channels 15:8) as Output
 * portC (channels 19:16) as Input-only
 * portC (channels 23:20) as Outputs
 */
DIO24ARD.setup(10, 0x00, 0xFF, 0xFE);

DIO24-ARD PN 100-7692 Page 17

Function: writeDDR()

Syntax: writeDDR (DDR_to_Write, DDR_value);

Inputs: DDR_to_Write : 0, 1, or 2 to set the Data Direction of portA, portB, or portC respectively

DDR_value : unsigned 8-Bit value. Bits set to “1” are outputs, “0” bits are input-only.

Outputs: None

Description: Writes the Data Direction for the designated port. Writes an unsigned 8-bit value where
each bit corresponds to a specific channel. Bits set to “1” will be outputs, bits that are 0
will be input-only.

portA [7:0] corresponds to channels [7:0]
portB [7:0] corresponds to channels [15:8]
portC [7:0] corresponds to channels [23:16]

It is important that “0” is always written to any channels that will be used as Input-Only.
The library routines manage this in the background by logically ANDing the data being
written against the Data Direction registers. Any Data Direction register bit set to “0”
will result in a write operation always being “0” regardless of the intended state.

Example: /**
 * Setup Data Directions as follows:
 * portA (channels 7:0) as Output
 * portB (channels 15:8) as Input-only
 * portC (channels 19:16) as Input-only
 * portC (channels 23:20) as Outputs
 */
DIO24ARD.writeDDR(0, 0xFF); // Write portA DDR
DIO24ARD.writeDDR(1, 0x00); // Write portB DDR
DIO24ARD.writeDDR(2, 0xF0); // Write portC DDR

DIO24-ARD PN 100-7692 Page 18

Function: readDDR()

Syntax: readDDR (DDR_to_Read);

Inputs: DDR_to_Read : 0, 1, or 2 for the Data Direction of portA, portB, or portC respectively

Outputs: Unsigned 8-bit value

Description: Returns 8-bit Data Direction of the designated port. Channel bits that are “0” are
input-only. Channel bits that are “1” are outputs.

Example: #include <SCIDYNE_DIO24ARD.h> // Include and Instantiate the DIO24-ARD library
SCIDYNE_DIO24ARD DIO24ARD;

void setup()
{
 /**
 * Setup the DIO24-ARD board and library
 * - Arduino digital I/O #10 designated as DIO24-ARD select on SPI bus
 * - Initially configure all DIO24-ARD channels as input-only
 */
 DIO24ARD.setup(10, 0x00, 0x00, 0x00); // pin#10, portA_DDR, portB_DDR, portC_DDR

 Serial.begin(115200); // Initialize serial communications for Serial Monitor
}

void loop()
{
 /***
 * Send the ports Data Directions to the Serial Monitor
 */
 Serial.println(F("Initial Data Directions"));

 Serial.print(F("PortA_DDR: ")); // Display portA Data Direction
 Serial.println(DIO24ARD.readDDR(0),HEX);

 Serial.print(F("PortB_DDR: ")); // Display portB Data Direction
 Serial.println(DIO24ARD.readDDR(1),HEX);

 Serial.print(F("PortC_DDR: ")); // Display portC Data Direction
 Serial.println(DIO24ARD.readDDR(2),HEX);

 Serial.println();

 /***
 * Now change the Data Direction of portB to all outputs. The Data Direction of portA and PortC are unaffected and remain
 * configured as input-only.
 */
 DIO24ARD.writeDDR(1, 0xFF);

 /***
 * Send the new ports Data Directions to the Serial Monitor
 */
 Serial.println(F("New Data Directions"));

 Serial.print(F("PortA_DDR: ")); // Display portA Data Direction
 Serial.println(DIO24ARD.readDDR(0),HEX);

 Serial.print(F("PortB_DDR: ")); // Display portB Data Direction
 Serial.println(DIO24ARD.readDDR(1),HEX);

 Serial.print(F("PortC_DDR: ")); // Display portC Data Direction
 Serial.println(DIO24ARD.readDDR(2),HEX);

 Serial.println();

 while(1); // Loop here forever. Press board reset to repeat program
}

DIO24-ARD PN 100-7692 Page 19

Function: setBit()

Syntax: setBit (bit_Number);

Inputs: bit_Number = The channel to set

Outputs: None

Description: Sets the channel output identified by bit_Number. Valid range is 0 to 23.

Channels [7:0] corresponds to portA [7:0]
Channels [15:8] corresponds to portB [7:0]
Channels [23:16] corresponds to portC [7:0]

Notes:

1. The DIO24-ARD hardware inverts the state written. Setting a bit to “1” results
in a “0” on the J1 connector pin for that channel.

2. Channels configured for input-only cannot be set.

Example: /***
 * Instantiate the DIO24-ARD library
 */
#include <SCIDYNE_DIO24ARD.h>
SCIDYNE_DIO24ARD DIO24ARD;

void setup()
{
 /**
 * Setup the DIO24-ARD board and library
 * - Arduino digital I/O #10 used as DIO24-ARD select on SPI bus
 * - All DIO24-ARD channels configured as outputs
 */
 DIO24ARD.setup(10, 0xFF, 0xFF, 0xFF); // pin#10, portA_DDR, portB_DDR, portC_DDR
}

void loop()
{
 /***
 * Continuously toggle DIO24-ARD channel #4. All other
 * channels are unaffected
 */
 delay(5); // Wait 5mS
 DIO24ARD.setBit(4); // This causes channel #4 to go low
 delay(5); // wait 5mS
 DIO24ARD.clrBit(4); // This causes channel #4 to go high
}

DIO24-ARD PN 100-7692 Page 20

Function: clrBit()

Syntax: clrBit (bit_Number);

Inputs: bit_Number = The channel to clear

Outputs: None

Description: Clears the channel output identified by bit_Number. Valid range is 0 to 23.

Channels [7:0] corresponds to portA [7:0]
Channels [15:8] corresponds to portB [7:0]
Channels [23:16] corresponds to portC [7:0]

Notes:

1. The DIO24-ARD hardware inverts the state written. Setting a bit to “0” results
in a “1” on the J1 connector pin for that channel.

2. Channels configured for input-only cannot be cleared.

Example: /***
 * Instantiate the DIO24-ARD library
 */
#include <SCIDYNE_DIO24ARD.h>
SCIDYNE_DIO24ARD DIO24ARD;

void setup()
{
 /**
 * Setup the DIO24-ARD board and library
 * - Arduino digital I/O #10 used as DIO24-ARD select on SPI bus
 * - All DIO24-ARD channels configured as outputs
 */
 DIO24ARD.setup(10, 0xFF, 0xFF, 0xFF); // pin#10, portA_DDR, portB_DDR, portC_DDR
}

void loop()
{
 /***
 * Continuously toggle DIO24-ARD channel #4. All other
 * channels are unaffected
 */
 delay(5); // Wait 5mS
 DIO24ARD.setBit(4); // This causes channel #4 to go low
 delay(5); // wait 5mS
 DIO24ARD.clrBit(4); // This causes channel #4 to go high
}

DIO24-ARD PN 100-7692 Page 21

Function: bitSetClr()

Syntax: bitSetClr (bit_Number, state);

Inputs: bit_Number = The channel to Set or Clear
state = “1” to set or “0” to clear

Outputs: None

Description: Set or Clear the channel output identified by bit_Number. Valid range is 0 to 23.
Use state = “1” to set, or state = “0” to clear

Channels [7:0] corresponds to portA [7:0]
Channels [15:8] corresponds to portB [7:0]
Channels [23:16] corresponds to portC [7:0]

Notes:

1. The DIO24-ARD hardware inverts the state written. Setting a bit to “1” results
in a “0” on the J1 connector pin for that channel. Clearing a bit to “0” results in
a “1” on the J1 connector pin for that channel.

2. Channels configured for input-only cannot be cleared.

Example: /***
 * Instantiate the DIO24-ARD library
 */
#include <SCIDYNE_DIO24ARD.h>
SCIDYNE_DIO24ARD DIO24ARD;

void setup()
{
 /**
 * Setup the DIO24-ARD board and library
 * - Arduino digital I/O #10 will be designated as DIO24-ARD select on SPI bus
 * - All DIO24-ARD channels configured as outputs
 */
 DIO24ARD.setup(10, 0xFF, 0xFF, 0xFF); // pin#10, portA_DDR, portB_DDR, portC_DDR
}

void loop()
{
 /***
 * Continuously toggle DIO24-ARD channel #4. All other channels are unaffected
 */
 delay(5); // Wait 5mS
 DIO24ARD.bitSetClr(4, 1); // This causes channel #4 to go low
 delay(5); // Wait 5mS
 DIO24ARD.bitSetClr(4, 0); // This causes channel #4 to go high
}

DIO24-ARD PN 100-7692 Page 22

Function: readBit()

Syntax: X = readBit(bitNumber);

Inputs: bit_Number = The channel to be read

Outputs: Boolean “0” or “1”

Description: Reads the digital state of the channel identified by bitNumber. Valid range is 0 to 23.
This function works equally on channels configured as inputs or outputs.

Channels [7:0] corresponds to portA [7:0]
Channels [15:8] corresponds to portB [7:0]
Channels [23:16] corresponds to portC [7:0]

Notes:

1. The DIO24-ARD hardware inverts the channel state. If the channel on connector
J1 is “1” the readBit() function returns “0”. Similarly, if the channel on
connector J1 is “0” the readBit() function returns “1”.

Example: #include <SCIDYNE_DIO24ARD.h>
SCIDYNE_DIO24ARD DIO24ARD;

void setup()
{
 /**
 * Setup the DIO24-ARD board and library
 * - Arduino digital I/O #10 designated as DIO24-ARD select on SPI bus
 * - Configure DIO24-ARD channels 7:0 (portA) as inputs and all others as outputs.
 */
 DIO24ARD.setup(10, 0x00, 0xFF, 0xFF); // pin#10, portA_DDR, portB_DDR, portC_DDR

 // Initialize serial communications for Serial Monitor
 Serial.begin(115200);
}

void loop()
{
 /***
 * Send the state of channels 7:0 (portA) to the Serial Monitor
 * Note: Open the Serial Monitor in the Arduino IDE to view.
 */

 Serial.print(F("Channel-0: ")); Serial.println(DIO24ARD.readBit(0) , BIN);
 Serial.print(F("Channel-1: ")); Serial.println(DIO24ARD.readBit(1) , BIN);
 Serial.print(F("Channel-2: ")); Serial.println(DIO24ARD.readBit(2) , BIN);
 Serial.print(F("Channel-3: ")); Serial.println(DIO24ARD.readBit(3) , BIN);
 Serial.print(F("Channel-4: ")); Serial.println(DIO24ARD.readBit(4) , BIN);
 Serial.print(F("Channel-5: ")); Serial.println(DIO24ARD.readBit(5) , BIN);
 Serial.print(F("Channel-6: ")); Serial.println(DIO24ARD.readBit(6) , BIN);
 Serial.print(F("Channel-7: ")); Serial.println(DIO24ARD.readBit(7) , BIN);

 Serial.println(F("------------"));
 delay(500); // Delay added to slow down screen scroll
}

DIO24-ARD PN 100-7692 Page 23

Function: portWrite()

Syntax: portWrite(port_to_Write, port_Byte);

Inputs: port_to_Write = The port that will be written to; portA = 0, portB = 1, portC = 2

port_Byte = 8-bit value that will be written

Outputs: None

Description: Writes an 8-bit value (port_Byte) to the designated port (port_to_Write)

Notes:

1. Any channel of a port being used as an output must have the corresponding bits
of the ports Data Direction register set to “1” to enable output operations. If not
“0” will be written to those channels.

2. The DIO24-ARD hardware inverts the state written. Writing a bit as “1” results
in a “0” on the J1 connector pin for that channel. Writing a bit as “0” results in a
“1” on the J1 connector pin for that channel.

Example: #include <SCIDYNE_DIO24ARD.h>
SCIDYNE_DIO24ARD DIO24ARD;

void setup()
{
 /**
 * Setup the DIO24-ARD board and library software
 * - Arduino digital I/O #10 used as DIO24-ARD select on SPI bus
 * - The portA channels configured as inputs, portB and portC configured as outputs
 */
 DIO24ARD.setup(10, 0x00, 0xFF, 0xFF); // pin#10, portA_DDR, portB_DDR, portC_DDR

 Serial.begin(115200); // Initialize serial communications for Serial Monitor
}

void loop()
{
 uint8_t counter = 0x00; // An 8-bit counter initialized to 0x00
 uint8_t portA_data, portB_data, portC_data; // Will hold the port data after a read

 while(1) {
 // Continuously toggle the bits of portB by echoing the 8-bit counter value.
 DIO24ARD.portWrite(1, counter); // Write portB with counter value
 counter++; // Increment the 8-bit counter

 // Read the three ports
 portA_data = DIO24ARD.portRead(0); // Read and store portA data
 portB_data = DIO24ARD.portRead(1); // Read and store portB data
 portC_data = DIO24ARD.portRead(2); // Read and store portC data

 // Send the port data to the serial monitor. Note: Open the Serial Monitor in the Arduino IDE to view.
 Serial.print(F("PortA: ")); Serial.println(portA_data,HEX); // Display portA data
 Serial.print(F("PortB: ")); Serial.println(portB_data,HEX); // Display portB data
 Serial.print(F("PortC: ")); Serial.println(portC_data,HEX); // Display portC data

 Serial.println();
 }
}

DIO24-ARD PN 100-7692 Page 24

Function: portRead()

Syntax: Returned Value = portRead(port_to_Read);

Inputs: port_to_Read = The port that will be read; portA = 0, portB = 1, portC = 2

Outputs: Unsigned 8-bit value, each bit represents the state of one channel

Description: Reads the 8-bit value of the designated port (port_to_Read)

Notes:

1. The DIO24-ARD hardware inverts the channel state. If the channel on connector
J1 is “1” the readBit() function returns “0”. Similarly, if the channel on
connector J1 is “0” the readBit() function returns “1”.

Example: #include <SCIDYNE_DIO24ARD.h>
SCIDYNE_DIO24ARD DIO24ARD;

void setup()
{
 /**
 * Setup the DIO24-ARD board and library software
 * - Arduino digital I/O #10 used as DIO24-ARD select on SPI bus
 * - The portA channels configured as inputs, portB and portC configured as outputs
 */
 DIO24ARD.setup(10, 0x00, 0xFF, 0xFF); // pin#10, portA_DDR, portB_DDR, portC_DDR

 Serial.begin(115200); // Initialize serial communications for Serial Monitor
}

void loop()
{
 uint8_t counter = 0x00; // An 8-bit counter initialized to 0x00
 uint8_t portA_data, portB_data, portC_data; // Will hold the port data after a read

 while(1) {
 // Continuously toggle the bits of portB by echoing the 8-bit counter value.
 DIO24ARD.portWrite(1, counter); // Write portB with counter value
 counter++; // Increment the 8-bit counter

 // Read the three ports
 portA_data = DIO24ARD.portRead(0); // Read and store portA data
 portB_data = DIO24ARD.portRead(1); // Read and store portB data
 portC_data = DIO24ARD.portRead(2); // Read and store portC data

 // Send the port data to the serial monitor. Note: Open the Serial Monitor in the Arduino IDE to view.
 Serial.print(F("PortA: ")); Serial.println(portA_data,HEX); // Display portA data
 Serial.print(F("PortB: ")); Serial.println(portB_data,HEX); // Display portB data
 Serial.print(F("PortC: ")); Serial.println(portC_data,HEX); // Display portC data

 Serial.println();
 }
}

DIO24-ARD PN 100-7692 Page 25

Specifications

Number of Channels: 24 individually programmable digital Input/Output channels, non-isolated.

Input Level: Logic 0 = 0.8vdc maximum, -0.3vdc minimum
 Logic 1 = 2.0vdc minimum, 5.6vdc maximum

Output Level: Logic 0 = < 1.0vdc (15ma load)
 Logic 1 = > 2.5vdc (500μa load)

Max Output Current: Per channel: Source: 1.0ma, passively by 4.7k Pull-Up resistor to +5V
 Sink: 85ma, actively by open-collector transistor to 0V (GND)

Software: Uses standard Arduino Serial-Peripheral-Interface (SPI) library functions.

Communications: Serial-Peripheral-Interface (SPI) through Arduino ICSP connector. Requires one user designated
 Arduino digital output for enable jumper selectable. EXT input for optional external enable signal.
 SPI Configuration: Mode: 0 (i.e.; SPI_MODE0) SCK: 8 MHz maximum (i.e.; SPI_CLOCK_DIV2)

Field Connections: 50 Position IDC Ribbon Cable. Pin out compatible with Industry Standard 8, 16, and 24 position
 I/O Module Racks.

Arduino Connections: Stack-through connectors allows multiple shields.
 Power: 8 Pos. x 1 Row
 Analog: 6 Pos x 1 Row
 Digital: 8 Pos x 1 Row & 10 Pos. x 1 Row
 ICSP: 3 Pos x 2 Row

Power Requirement: +5vdc ±5% @ 45ma typical, all ports written as 0xff, external loads excluded

Dimensions: 2.80"W x 2.97"L x 1.04"H overall. Modified Arduino R3 format

Environmental: Operating temperature: -40C to 85C
 Non-condensing relative humidity: 5% to 95%

Compliance: RoHS / Lead-Free Compliant

Product Origin: Designed, engineered, and assembled in U.S.A. by SCIDYNE Corporation using
 domestic and foreign components.

DIO24-ARD PN 100-7692 Page 26

Appendix A: Schematic Diagram

DIO24-ARD PN 100-7692 Page 27

User Notes

